Date Log
Pemodelan Tekanan Bawah Permukaan Dengan Menggunakan Metode Time Series Dalam Proses Injeksi Slurry di Sumur Disposal Duri Field
Corresponding Author(s) : Bambang Sutrimo
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 2 No 2 (2021): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
Oily sand and water contaminated with oil is part of the results of exploration and exploitation of petroleum categorized as hazardous and toxic waste (B3), it is necessary to carry out special processing into slurry fluid and injection into disposal wells. The main problem in the injection process is the increase in bottom hole pressure during the injection process which causes well plugging problems and hampers oil production activities in the Duri field. The main objective of this research is to determine the best model and safety factor in the injection process using the time series Arima Software ‘R’ method with the parameters of the slurry flow rate and slurry composition based on the injection strategy at injection well B. Forecasting Arima in well B with an injection flow rate of 2,3 m3/minute and a slurry concentration of 25% waste and 75% water is Arima model 3 (1,1,0) with the smallest value of Akaike Information Criteria (AIC) 2,773,98 and the smallest Schwarzt Bayesian Information Criteria (SBC) is 2,781, the average bottom hole pressure predicted is 1,256.4 psi and the average bottom hole pressure from the field data is 1,247.54 psi. Validation of the forecasting model for well B that the percentage of model error compared to field data in well B is 0.37%, Root Mean Square Error (RMSE) 4,85 and model error using pressure gradient 0,37%. Arima modeling can be applied to predict bottom hole pressure based on the injection strategy in the injection process to the disposal well.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Abdurrahman, M., Permadi, A.K., Hidayat, F., dan Pangaribuan, L., 2018, Pengaruh Parameter Operasional Injeksi CO2 Terhadap Peningkatan Perolehan: Studi Kasus Lapangan M, Jurnal JTMGB. Vol. 16 No. 2, Hal 81-91.
Anggara, B., Marwanza, A., dan Masagus, A.A., 2021, Penentuan Model Variogram Berdasarkan Root Mean Square Error di PT X, Sulawesi Utara, Jurnal Indonesia Mining and Energy Journal Vol. 4, No.1, Hal 11-21.
Anggraini, D.P., Rosadi, D, Hermansyah., dan Rizal.A.A., 2020, Prediksi Harga Emas Dunia di Masa Pandemi Covid-19 Menggunakan Model Arima, Jurnal Aplikasi Statistika &
Komputasi Vol.12, No.1, Hal 71-84.
Candra, D., dan Werda, W.H., 2015, Prediksi Tingkat Pengangguran Menggunakan Fuzzy Inference System (ANFIS), Konfrensi Nasional Sistem & Informatika STIMIK STIKOM , Vol 12, No 02, Hal 99 – 106.
Jumarlis., 2013, Pengaruh Lingkungan Minyak Mentah Terhadap Laju Korosi Pada Pipa Baja Karbon dan Pipa Galvanis, Jurnal Teknik Mesin, Vol 3 No 2, Hal 66 – 69.
Marika, E., Uriansrud, F., Bilak, R dan Dusseault, M.B., 2009, Achieving Zero Discharge E&P Operation using Deep Well Disposal, Prosiding World Heavy Oil Congress Paper WHOC09-350. Hal 1 – 19.
Mikhailov, V.G., Golofastova. N.N., Galanina, T.V., Koroleva, T.G., dan Mikhailova, Y.S., 2017, Environmental-Economic Assessment Of Generation, Flow And Efficiency Of Use Of Production And Consumption Waste, Prosiding IOP Conf. Series: Earth and Environmental Science, Vol 50, No 1, Hal 20 – 38.
PP No SK.110/MenLHK/Sekjen/PLB.3/1/2019., 2019, Izin Pengelolaan Limbah Bahan Berbahaya dan Beracun untuk Kegiatan Penimbunan Limbah Bahan Berbahaya pada Fasilitas Sumur Injeksi PT. Chevron Pasific Indonesia
Rahmawati, Wahyuningsih, S., dan Syaripuddin. (2019). Peramalan Laju Produksi Minyak Bumi Provinsi Kalimantan Timur Menggunakan Metode DCA dan Arima. Journal of Statistical Application and Computational Statistics, Vol 11 No 1, Hal 73 – 86.
Reed, A.C., Mathews, J.L,. Bruno, M.S., dan Olmstead, S.E., 2001, Safe Disposal of One Million Barrels of NORM in Louisiana through Slurry Fracture Injection, Prosiding SPE Annual Technical Conference and Exhibition, Vol 17 No 2, Hal 72 – 81.
Rosadi, D., 2011, Analisis Ekonometrika & Runtun Waktu Terapan dengan R. Penerbit Andi, Yogyakarta.
SAM – Jereh Int., 2021, Teknikal Data, Pekanbaru.
Sinkov, K., Spesivtsev, P., Sofronov, I., Zimina, A., Umnov, A., Yarullin, R., Vetrov., D., 2018. Predictive Model for Bottom Hole Pressure based on Machine Learning”, Journal of Petroleum Science and Engineering. Vol 166, Hal 825-841