Date Log
Modifikasi Kitosan dari Limbah Udang menggunakan Metode Gelasi Ionik
Corresponding Author(s) : Ahmad Fadli
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 4 No 1 (2023): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
Chitin contained in shrimp shells can be used as raw material for making chitosan which is then reprocessed into nanoparticle-sized chitosan which has many benefits. This study aims to synthesize nanoparticle chitosan using the ionic gelation method and determine the effect of variations in the concentration of formic acid, sodium tripolyphosphate (TPP), chitosan, and the volume ratio of chitosan: TPP on particle characteristics, which include particle size, polydispersity index, zeta potential, particle morphology, and functional groups of particles. The first step for making nanoparticle chitosan is to make a chitosan solution using a magnetic stirrer. After that, the TPP solution at a certain volume ratio between chitosan: TPP was added to the chitosan solution. Stirring is carried out for 1 hour with a stirring speed of 1200 rpm. Furthermore, the nanoparticle chitosan was characterized by using Particle Size Analyzer (PSA), zeta potential analyzer, Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red (FTIR). The synthesis of nanoparticle chitosan using the ionic gelation method has been successfully carried out, obtaining a particle size of 464.4 nm, a polydispersity index of 0.214, a zeta potential of +0.48, and a cross-link of chitosan-TPP particles is formed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Anand, M,. Sathyapriya, P., Maruthupandy, M., Hameedha Beevi, M. (2018). Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application. Frontiers in Laboratory Medicine. 2(2), 72-78. https://doi.org/10.1016/j.flm.2018.07.003
Avadi, M. R., Sadeghi, A. M. M., Mohammadpour, N., Abedin, S., Atyabi, F., Dinarvand, R., & Rafiee-Tehrani, M. (2010). Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine: Nanotechnology, Biology and Medicine, 6(1), 58-63. https://doi.org/10.1016/j.nano.2009.04.007
Bernkop-Schnürch, A. (2005). Thiomers: a new generation of mucoadhesive polymers. Advanced Drug Delivery Reviews, 57(11), 1569-1582. https://doi.org/10.1016/j.addr.2005.07.002
Bhumkar, D. R., & Pokharkar, V. B. (2006). Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note. American Association of Pharmaceutical Scientists Pharmscitech, 7(2), E138-E143.
Calvo, P., Remunan‐Lopez, C., Vila‐Jato, J. L., & Alonso, M. J. (1997). Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science, 63(1), 125-132. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1%3C125::AID-APP13%3E3.0.CO;2-4
Chen, X. G., Liu, C. S., Liu, C. G., Meng, X. H., Lee, C. M., & Park, H. J. (2006). Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochemical Engineering Journal, 27(3), 269-274. https://doi.org/10.1016/j.bej.2005.08.021
Choi, J., Kwak, S. Y., Kang, S., Lee, S. S., Park, M., Lim, S., Kim, J., Choe, C. R., & Hong, S. I. (2002). Synthesis of highly crosslinked monodisperse polymer particles: Effect of reaction parameters on the size and size distribution. Journal of Polymer Science Part A: Polymer Chemistry, 40(23), 4368-4377. https://doi.org/10.1002/pola.10514
de Pinho Neves, A. L., Milioli, C. C., Müller, L., Riella, H. G., Kuhnen, N. C., & Stulzer, H. K. (2014). Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445, 34-39. https://doi.org/10.1016/j.colsurfa.2013.12.058
Fan, W., Yan, W., Xu, Z., & Ni, H. (2012). Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and surfaces B: Biointerfaces, 90, 21-27. https://doi.org/10.1016/j.colsurfb.2011.09.042
Grenha, A., Gomes, M. E., Rodrigues, M., Santo, V. E., Mano, J. F., Neves, N. M., & Reis, R. L. (2010). Development of new chitosan/carrageenan nanoparticles for drug delivery applications. Journal of Biomedical Materials Research Part A, 92(4), 1265-1272. https://doi.org/10.1002/jbm.a.32466
Gokce, Y., Cengiz, B., Yildiz, N., Calimli, A., & Aktas, Z. (2014). Ultrasonication of chitosan nanoparticle suspension: Influence on particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 75-81. https://doi.org/10.1016/j.colsurfa.2014.08.028
Hassani, S., Laouini, A., Fessi, H., & Charcosset, C. (2015). Preparation of chitosan–TPP nanoparticles using microengineered membranes–Effect of parameters and encapsulation of tacrine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, 34-43. https://doi.org/10.1016/j.colsurfa.2015.04.006
Hu, B., Pan, C., Sun, Y., Hou, Z., Ye, H., Hu, B., & Zeng, X. (2008). Optimization of fabrication parameters to produce chitosan− tripolyphosphate nanoparticles for delivery of tea catechins. Journal of Agricultural and Food Chemistry, 56(16), 7451-7458. https://doi.org/10.1021/jf801111c
Mohanraj, V. J., & Chen, Y. (2006). Nanoparticles-a review. Tropical Journal of Pharmaceutical Research, 5(1), 561-573. https://doi.org/10.4314/tjpr.v5i1.14634
Rathke, T. D., & Hudson, S. M. (1994). Review of chitin and chitosan as fiber and film formers. Journal of Macromolecular Science, Part C: Polymer Reviews, 34(3), 375-437. https://doi.org/10.1080/15321799408014163
Ronson, K. (2012). Zeta potential analysis of nanoparticles. Nano Composix, 1(1).
Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric Identification of Organic Compounds (7th edition). USA: John Wiley & Sons, Inc.
Synowiecki, J., & Al-Khateeb, N. A. (2003). Production, properties, and some new applications of chitin and its derivatives. Critical Reviews in Food Science and Nutrition, 43(2), 145-171. https://doi.org/10.1080/10408690390826473
Tripathy, S., Das, S., Chakraborty, S. P., Sahu, S. K., Pramanik, P., & Roy, S. (2012). Synthesis, characterization of chitosan-tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: a dose and duration dependent approach. International Journal of Pharmaceutics, 434(1-2), 292-305. https://doi.org/10.1016/j.ijpharm.2012.05.064