Date Log
Biogas dari POME: Pengaruh Lingkungan Terhadap Produksi Energi Terbarukan di Industri Kelapa Sawit
Corresponding Author(s) : Said Zul Amraini
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 5 No 2 (2024): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
Palm oil mill effluent is a type of organic agro-industrial waste from the by-product of the processing of fresh oil palm fruit bunches to produce Crude Palm Oil. The management of POME as biogas is an added value for companies to meet the needs of energy sources in the Palm Oil Mill, both for Crude Palm Oil, Kernel Crushing Plant, and domestic needs as a source of electrical energy. POME is a colloidal suspension containing 95-96% water, 0.6-0.7% oil and 4-5% fat and total solids. Anaerobic degradation of POME is the main stage in the biogas production process at the Sei Pagar Palm Oil Factory. The ambient temperature was measured at 08.00, 13.00, and 18.00 for 11 days of testing. To analyze the effect of ambient temperature on sample temperature, a sample temperature test was carried out using a pH meter for each ambient temperature test. To analyze the impact of ambient temperature on the flow rate of gas produced and methane content in biogas, the sensor flow rate was checked with the valve at the reactor outlet fully open. The ambient temperature of the reactor does not change the sample temperature because the temperature in the reactor is controlled by the feed entering the reactor. The average temperature of the reactor environment is lower than the reactor so that it does not affect the gas flow rate (biogas formation process). The average temperature of the reactor environment is lower than the reactor temperature so that it does not affect the formation of methane.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Adekunle, K. F., & Okolie, J. A. (2015). A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology, 6(3), 205–212. https://doi.org/10.4236/abb.2015.63020.
Cazier, E. A., Trably, E., Steyer, J. P., & Escudie, R. (2015). Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Bioresource Technology, 190, 106–113. https://doi.org/10.1016/j.biortech.2015.04.055.
Detman, A., Mielecki, D., Pleśniak, Ł., Bucha, M., Janiga, M., Matyasik, I., Chojnacka, A., Jȩdrysek, M. O., Błaszczyk, M. K., & Sikora, A. (2018). Methane-yielding Microbial Communities Processing Lactate-rich Substrates: A piece of the Anaerobic Digestion Puzzle. Biotechnology for Biofuels, 11(1). https://doi.org/10.1186/s13068-018-1106-z.
Dufault-Thompson, K., Nie, C., Jian, H., Wang, F., & Zhang, Y. (2022). Reconstruction and Analysis of Thermodynamically Constrained Models Reveal Metabolic Responses of a Deep-Sea Bacterium to Temperature Perturbations. mSystems, 7(4), e0058822. https://doi.org/10.1128/msystems.00588-22.
Feng, Y. (2008). Effect of Temperature on Biogas Production and Fermentation Period Length from the Anaerobic Digestion of Crop Residue. Journal of Agro-Environment Science, 27(5), 2069-2074.
Fitriani, D. A., & Yuliani, M. (2011). Prarancangan Pabrik Biogas dari Palm Oil Mill Effluent (POME) Kapasitas 1.321.000 m3/tahun. Tugas Akhir. Universitas Sebelas Maret.
Hidayah, F. Z. (2018). Analisis Konsentrasi Gas Metana (CH4) dan Karbondioksida (CO2) dari Tangki Septik pada Kegiatan Non Perumahan di Kelurahan Cupak Tangah, Kecapatan Pauh, Kota Padang. Tugas Akhir. Universitas Andalas.
Hupfauf, S., Plattner, P., Wagner, A., Kaufmann, R., Insam, H., & Podmirseg, S. M. (2018). Temperature shapes the microbiota in anaerobic digestion and increases efficiency at 45 °C. Bioresource Technology, 269: 309-318. https://doi.org/10.1016/J.BIORTECH.2018.08.106
Perdana, Y. P. (2024). Studi Pemanfaatan Palm Oil Mill Effluent (POME) sebagai Bahan Tambah Campuran Aspal Penetrasi 60/70 terhadap Karakteristik Aspal. Skripsi. Universitas Jambi.
Rachmat, D., & Mondamina, N. W. (2023). Kajian Pemanfaatan Gas Metana Hasil Pengolahan Pabrik Kelapa Sawit dari POME sebagai Energi Alternatif Boiler Burner. Jurnal Vokasi Teknologi Industri, 5(1), 13–22.
Rahayu, A. S., Karsiwulan, D., Yuwono, H., Trisnawati, I., Mulyasari, S., Rahardjo, S., Hokermin, S., & Paramita, V. (2015). Konversi POME menjadi Biogas (A. S. Rahayu, D. Karsiwulan, H. Yuwono, & V. Paramita, Eds.). Winrock International.
Ramaraj, R., & Unpaprom, Y. (2016). Effect of Temperature on the Performance of Biogas Production from Duckweed. Chemistry Research Journal, 1(1), 58–66.
Rompas, P. T. D. (2012). Perpindahan Kalor. Unima Press.
Syaifullah Z., A. M. (2021). Proses Pengolahan Kelapa Sawit PT Perkebunan Nusantara XIV Unit Usaha PKS LUWU. Laporan Kuliah Kerja Praktek. Politeknik ATI Makassar.