Date Log
Evaluasi Performa Heat Exchanger Menggunakan Software Aspen HYSYS di Central Gathering Station "X" Plant Operations "Y" Pertamina Hulu Rokan
Corresponding Author(s) : Sri Helianty
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 6 No 1 (2025): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
The Rokan Block is one of Indonesia's largest oil producers. It is managed by PT Pertamina Hulu Rokan (PHR) and contributes 25% to Indonesia's total oil production. The Central Gathering Station (CGS) “X” at PT PHR utilizes shell and tube heat exchangers (HEX) to effectively heat produced fluids, thereby enhancing the separation of crude oil. Despite their utility, several challenges—such as uneven fluid distribution, fouling, and tube plugging—have compromised the performance of heat exchangers (HEX). These issues can result in some units failing to reach the desired temperature. This study assessed the performance of HEX at CGS X using Aspen HYSYS and Aspen Exchanger Design and Rating (EDR) software, concentrating on key parameters including the heat transfer coefficient, pressure drop, and fluid velocity. The analysis revealed that low fluid velocity within the shell increased the risk of fouling, and a fouling resistance exceeding 0.03 ℉·hr·ft²/Btu significantly diminished efficiency. To address this, a redesigned heat exchanger (HEX) was proposed to optimize fluid velocity, achieving a rate of 1.15 ft/s. This adjustment reduced fouling and enhanced heat transfer while maintaining economic feasibility by decreasing the required heat transfer area. Operational recommendations based on the performance evaluation included making appropriate fluid distribution adjustments and conducting timely maintenance to ensure reliable operation
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Ardha. (2024). Rokan’s Natural Harmony A Journey Through Nature. PT Pertamina Hulu Rokan.
Belhaj, H. A. (2023). Tight Oil Reservoirs Characterization, Modeling, and Field Development. Elsevier Science.
Budiman, & Pusparatu. (2023). Optimasi Kinerja Heat Exchanger (30–E-2502) di Unit Asam Fosfat (H3PO4) Departemen Produksi Iii B Pt. Petrokimia Gresik. Prosiding Seminar Nasional Teknologi Energi Dan Mineral, 3(1), 341–352. https://doi.org/10.53026/sntem.v3i1.1158
El-Said, E. M. S., Awad, M. M., & Abdulaziz, M. (2021). A comprehensive review on pressurized thermal shock: predictive, preventive and safety issues. Journal of Thermal Analysis and Calorimetry, 146(2), 525–544. https://doi.org/10.1007/s10973-020-10030-4
Harhara, A., & Hasan, M. M. F. (2020). Dynamic modeling of heat exchanger tube rupture. BMC Chemical Engineering, 2(1), 1–20. https://doi.org/10.1186/s42480-020-0029-1
Janaun, J., Kamin, N. H., Wong, K. H., Tham, H. J., Kong, V. V., & Farajpourlar, M. (2016). Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application. IOP Conference Series: Earth and Environmental Science, 36(1). https://doi.org/10.1088/1755-1315/36/1/012056
Jradi, R., Marvillet, C., & Razak Jeday, M. (2023). Fouling in Industrial Heat Exchangers: Formation, Detection and Mitigation. Heat Transfer - Fundamentals, Enhancement and Applications, May. https://doi.org/10.5772/intechopen.102487
Kern, D. Q. (1965). Process Heat Transfer. McGraw Hill.
Petroleum Association Japan. (2000). Properties: Duri Crude. https://www.pcs.gr.jp/doc/keijihenka/e-data/dr_property.html
Sarma, P. K., Konijeti, R., Subramanyam, T., Prasad, L. S. V., Korada, V. S., Srinivas, V., Vedula, D. R., & Prasad, V. S. R. K. (2017). Fouling and its effect on the thermal performance of heat exchanger tubes. International Journal of Heat and Technology, 35(3), 509–519. https://doi.org/10.18280/ijht.350307
Seider, W. D., Lewin, D. R., Seader, J. D., Widagdo, S., Gani, R., & Ng, K. M. (2017). Product and Process Design Principles. John Wiley & Sons.
Setiorini, I. A., & Faputri, A. F. (2023). E Evaluasi Kinerja Heat Exchanger Jenis Kondensor 1110-C Tipe Shell and Tube Berdasarkan Nilai Fouling Factor Pada Unit Purifikasi Di Ammonia Plant Pt X. Jurnal Teknik Patra Akademika, 14(01), 23–30. https://doi.org/10.52506/jtpa.v14i01.188
Sinnot, R. K. (2005). Chemical Engineering Design (4th ed.).
Vivekanandan, R., Stalin, N., Kaviya, M., & D, A. J. S. (2023). Optimization of Design Parameters in Shell and Tube Heat Exchanger using Aspen HYSYS. 208–211. https://doi.org/10.48175/IJARSCT-10982
Winderasta, W. (2018). Managing reservoir surveillance in the Duri Steam Flood Field. September 2019. https://doi.org/10.29118/ipa18.577.e
Yaghi, B. M., & Al-Bemani, A. (2002). Heavy crude oil viscosity reduction for pipeline transportation. Energy Sources, 24(2), 93–102. https://doi.org/10.1080/00908310252774417