Date Log
Pengaruh Variasi Suhu Sintesis Kristal Hidroksiapatit (HAp) terhadap Diameter Kristal yang Disintesis dari Precipitated Calciul Carbonate (PCC) Kulit Telur Ayam Secara Hidrotermal
Corresponding Author(s) : Yelmida Yelmida
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 6 No 1 (2025): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
In Indonesia, the incidence of bone fractures in 2018 was approximately nine million, with various types of fractures and causes. Hydroxyapatite, Ca₁₀(PO₄)₆(OH)₂ or HAp, is one of the bioceramics commonly used in biomedical applications due to its composition, it has biocompatible and osteoconductive properties and integrates well with bone. The aim of this research is to determine the time required to produce hydroxyapatite (HAp) diameter through the growth of HAp crystals from chicken egg shells. The aim of this study is to examine the effect of reaction temperature (120 and 140°C) and hydrothermal reaction time (1, 3, 4, 5, 7, and 9 hours) on the crystal growth of apatite compounds from Precipitated Calcium Carbonate (PCC) of chicken eggshells. Technically, PCC has advantages such as small particle size (microscale) and homogeneity. HAp is made from PCC and diammonium hydrogen phosphate (NH₄)₂HPO₄ as a phosphate source in the hydrothermal vessel.The HAp produced is characterized using X-ray diffraction (XRD). The HAp crystals obtained are hexagonal in shape with significant precision in the crystalline details of Holly Springs Hydroxyapatite. The good condition process to produced highest crystal diameter of HAp was achieved at a temperature of 140°C, measuring 33.29 nm, with a reaction time of 9 hours. Thus, the higher the reaction temperature and the longer the synthesis time, the larger the HAp crystal diameter
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Alkan, B. (2015). Chemical and structural characterization of selenium-incorporated hydroxyapatite (Master's thesis, Middle East Technical University).
Atirah. (2017). Produksi dan Karakteristik Hidroksiapatit (Ca10(PO4)6(OH)2) Tulang Broiler Pada Suhu Pembakaran Berbeda. Skripsi. Fakultas Peternakan Universitas Hasanuddin: Makassar.
Azis, Y., Jamarun, N., Arief, S., & Nur, H. (2015). Facile synthesis of hydroxyapatite particles from cockle shells (Anadaragranosa) by hydrothermal method. Oriental journal of chemistry, 31(2), 1-7.
Bingöl, O. R., & Durucan, C. (2012). Hydrothermal synthesis of hydroxyapatite from calcium sulfate hemihydrate. Am. J. Biomed. Sci, 4(1), 50-59.
Hariyanto, Y.A., Taufiq, A. and Sunaryono, S., 2018. Sintesis, Karakterisasi Struktur dan Sifat Optik Nanopartikel Hidroksiapatit/Magnetit. JPSE (Journal of Physical Science and Engineering), 3(1), 16-24.
Hien, V. D., Huong, D. Q., & Bich, P. T. N. (2010). Study of the formation of porous hydroxyapatite ceramics from corals via hydrothermal process. Vietnam Journal of Chemistry, 48(5).
Istifarah, A. P., & Widiyanti, P. (2012). Sintesis dan Karakterisasi Komposit Hidroksiapatit dari Tulang Sotong (Sepia sp.)-Kitosan untuk Kandidat Aplikasi Bone Filler. Surabaya: Universitas Airlangga.
Kumar, G. S., Girija, E. K., Thamizhavel, A., Yokogawa, Y., & Kalkura, S. N. (2010). Synthesis and characterization of bioactive hydroxyapatite–calcite nanocomposite for biomedical applications. Journal of colloid and interface science, 349(1), 56-62.
Kuśnieruk, S., Wojnarowicz, J., Chodara, A., Chudoba, T., Gierlotka, S. and Lojkowski, W., 2016. Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles. Beilstein journal of nanotechnology, 7(1), pp.1586-1601.
Macha, I. J., Ozyegin, L., Chou, J., Samur, R., Oktar, F. A. I. K., & Ben-Nissan, B. (2013). An alternative synthesis method for di calcium phosphate (Monetite) powders from mediterranean mussel (Mytilus galloprovincialis) shells. Journal of the Australian Ceramic Society.
Mehta, M. S., & Singh, R. (2016). Effects of aging time and sintering temperatures on thermal, structural and morphological properties of coralline hydroxyapatite. Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 3(2), 223-237.
Render, D., Samuel, T., King, H., Vig, M., Jeelani, S., Babu, R. J., & Rangari, V. (2016). Biomaterial‐Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery. Journal of nanomaterials, 2016(1), 3170248.
Rujitanapanich, S., Kumpapan, P., & Wanjanoi, P. (2014). Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia, 56, 112-117.
Sitohang, F., Azis, Y., Zultiniar. (2016). Sintesis Hidroksiapatit dari Precipitated Calcium Carbonate (PCC) Kulit Telur Ayam Ras Melalui Metode Hidrotermal. JOM FT Teknik, 3(2), 1-7.
Strachowski, T., Baran, M., Małek, M., Kosturek, R., Grzanka, E., Mizeracki, J., ... & Marynowicz, S. (2022). Hydrothermal synthesis of zinc oxide nanoparticles using different chemical reaction stimulation methods and their influence on process kinetics. Materials, 15(21), 7661.
Vorokh, A.S., 2018. Scherrer formula: estimation of error in determining small nanoparticle size. Наносистемы: физика, химия, математика, 9(3), 364-369.
Yahya, M., & Azis, Y. Sintesis Hidroksiapatit dari Precipitated Calcium Carbonate (PCC) Kulit Telur Ayam melalui Proses Hidrotermal (Doctoral dissertation, Riau University).
Yuniari, A., & Kasmudjiastuti, E. (2012). Spektroscopi FTIR dan sifat mekanik nanokomposit grafting HDPE dan nanoprecipitated calcium carbonate (NPCC). Majalah Kulit, Karet, dan Plastik, 28(2), 89-96.