Date Log
Paper Review: Aplikasi DES (Deep Eutectic Solvents) sebagai Katalis Hijau
Corresponding Author(s) : Ida Zahrina
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 3 No 1 (2022): Journal of Bioprocess, Chemical and Environmental Engineering
Abstract
Deep eutectic solvents (DES) were intoduced to overcome the drawbacks of conventional catalysts (H2SO4, HCl, H3PO4, p-toluene sulfonic acid) due to several advantages; biodegradibility, cheap raw materials, high thermal and chemical stabilities, low melting point, low volatility, low toxicity, simple preparation as well as its physicochemical properties (melting point, acidity, density, viscosity, solubility and polarity) are easy to modify. DES is a mixture of two or more compounds of hydrogen bonding acceptor (HBA) and hydrogen bonding donor (HBD). The hydrogen bond formed between HBA/HBD mixture resulting to lower lattice energy thus lowering its melting point. Previous authors had reported the application of DES as reaction medium exhibit excellent catalytic activity on product yields, conversions and reusabilities. The aim of this article is to attract attention more comphrehensive studies on the utilization of DES as potential green catalyst.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Abbottt, A. P., Boothby, D., Capper, G., Davies, D. L. dan Rasheed, R. K. (2004). Deep Eutectic Solvents Formed Between Choline Chloride and Carboxylic Acid: Versatile Alternatives to Ionic Liquids. J. Am. Chem. Soc., 126, 9124-9147. https://doi.org/10.1021/ja048266j.
Abbottt, A. P., Barron, J. C., Ryder, K. S. dan Wilson, D. (2007). Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations. Chem. Eur. J., 13, 6495–6501. https://doi.org/10.1002/chem.200601738.
Achkar, T. E., Fourmentin, S. dan Greige-Gerges, H. (2019). Deep Eutectic Solvents: An Overview on Their Interactions with Water and Biochemical Compounds. Journal of Molecular Liquids. 288, 111028. http://dx.doi.org/10.1016/j.molliq.2019.111028.
Aisha, F. (2022). Kajian Model Kinetika Gliserolisis Asam Stearat Menggunakan Katalis NADES dari Kolin Klorida dan Sorbitol. Tesis. Universitas Riau, Pekanbaru. https://digilib.unri.ac.id/index.php?p=show_detail&id=104910.
Alhassan, Y. dan Kumar, N. (2016). Single Step Biodiesel Production from Pongamia Pinnata (Karanja) Seed Oil Using Deep Eutectic Solvent (DEs) Catalysts. Waste and Biomass Valorization, 7, 5, 1055–1065. https://doi.org/10.1007/S12649-016-9529-X.
Alhassan, Y., Kumar, N. dan Bugaje, I. M. (2016). Hydrothermal Liquefaction of De-Oiled Jatropha Curcas Cake Using Deep Eutectic Solvents (DESs) as Catalysts and Co-Solvents. Bioresource Technology, 199, 375–381. https://doi.org/10.1016/j.biortech.2015.07.116.
Alhassan, Y., Pali, H. S., Kumar, N. dan Bugaje, I. M. (2017). Co-Liquefaction of Whole Jatropha Curcas Seed and Glycerol Using Deep Eutectic Solvents as Catalysts. Energy, 138, 48–59. https://doi.org/10.1016/j.energy.2017.07.038.
Anggriawan, R. (2020). Esterifikasi Asam Palmitat Dengan Gliserol Menggunakan Katalis NADES (Natural Deep Eutectic Solvents) dari Betain Hidroklorida dan Sorbitol. Skripsi. Universitas Riau, Pekanbaru. https://digilib.unri.ac.id/index.php?p=show_detail&id=92595.
Aroso, I. M., Paiva, A., Reis, R. L. dan Duarte, A. R. C. (2017). Natural Deep Eutectic Solvents from Choline Chloride and Betaine-Physicochemical Properties. Journal Of Molecular Liquids, 241, 654-661. https://doi.org/10.1016/j.molliq.2017.06.051.
Badovskaya, L. A. dan Povarova, L. V. (2009). Oxidation of Furans (Review). In Chemistry of Heterocyclic Compounds, 45, 9, 1023-1034. https://doi.org/10.1007/S10593-009-0390-8.
Birk Lauridsen J. (1976). Food Emulsifiers: Surface Activity, Edibility, Manufacture, Composition, and Application. J Am Oil Chemist’ Soc, 5, 400-407. https://doi.org/10.1007/Bf02605731.
Cao, J., Qi, B., Liu, J., Shang, Y., Liu, H., Wang, W., Lv, J., Chen, Z., Zhang, H. dan Zhou, X. (2016). Deep Eutectic Solvent Choline Chloride·2CrCl3·6H2O: An Efficient Catalyst for Esterification of Formic and Acetic Acid at Room Temperature. Rsc Advances, 6, 26, 21612–21616. https://doi.org/10.1039/C6ra01029f.
Cheng, S. F., Choo, Y. M., Ma, A. N. dan Chuah, C. H. (2015). Rapid Synthesis of Palm-Based Monoacylglycerols. JAOCS., 82, 11, 791-795. http://dx.doi.org/10.1007/s11746-005-1145-7.
Ching, T. W., Haritos, V. dan Tanksale, A. (2017). Microwave Assisted Conversion of Microcrystalline Cellulose into Value Added Chemicals Using Dilute Acid Catalyst. Carbohydrate Polymers, 157, 1794–1800. https://doi.org/10.1016/j.carbpol.2016.11.066.
Dai, Y., Van Spronsen, J., Witkamp, G. J., Verpoorte, R., Dan Choi, Y. H. (2013). Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Analytica Chimica Acta., 766, 61–68. https://doi.org/10.1016/j.aca.2012.12.019.
Duarte, A. R. C., Ferreira, A. S. D., Barreiros, S., Cabrita, E., Reis, R. L. dan Paiva, A. (2017). A Comparison Between Pure Active Pharmaceutical Ingredients and Therapeutic Deep Eutectic Solvents: Solubility and Permeability Studies. European Journal of Pharmaceutics and Biopharmaceutics, 114, 296–30. https://doi.org/10.1016/j.ejpb.2017.02.003.
Emma L. S., Abbottt, A. P. dan Karl S. R. (2014). Deep Eutectic Solvents (DES) and Their Applications. Chem. Rev., 114, 11060−11082. https://doi.org/10.1021/cr300162p.
Farrán, A., Cai, C., Sandoval, M., Xu, Y., Liu, J., Hernáiz, M. J. dan Linhardt, R. J. (2015). Green Solvents in Carbohydrate Chemistry: From Raw Materials to Fine Chemicals. Chemical Reviews, American Chemical Society, 115, 14, 6811–6853. https://doi.org/10.1021/cr500719h.
Fletcher, K. A., Storey, I. A., Hendricks, A. E. dan Pandey, S. (2001). Behavior of The Solvatochromic Probes Reichardt’s Dye, Pyrene, Dansylamide, Nile Red and 1-Pyrenecarbaldehyde within The Room Temperature Ionic Liquid. Green Chemistry, 3, 210–215. https://doi.org/10.1039/B103592B.
Freitas, L., Paula, A. V., dos Santos, J. C., Zanin, G. M. Dan De Castro, H. F. (2010). Enzymatic Synthesis of Monoglycerides by Esterification Reaction Using Penicillium Camembertii Lipase Immobillized on Epoxy SiO2-PVA Composite. Journal of Molecular Catalysis B: Enzymatic, 65, 87-90. https://doi.org/10.1016/j.molcatb.2009.12.009.
García, G., Aparicio, S., Ullah, R. dan Atilhan, M. (2015). Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications. Energy And Fuels, 29, 4, 2616–2644. https://doi.org/10.1021/ef5028873.
Gajardo-Parra, N. F., Lubben, M. J., Winnert, J. M., Leiva, Á., Brennecke, J. F. dan Canales, R. I. (2019). Physicochemical Properties of Choline Chloride-Based Deep Eutectic Solvents and Excess Properties of Their Pseudo-Binary Mixtures With 1-Butanol. J. Chem. Thermodyn., 133, 272– 284. https://doi.org/10.1016/J.JCT.2019.02.010.
Guo, T., Qiu, M. dan Qi, X. (2019). Selective Conversion of Biomass-Derived Levulinic Acid to Ethyl Levulinate Catalyzed by Metal Organic Framework (MOF)-Supported Polyoxometalates. Applied Catalysis A: General, 572, 168–175. https://doi.org/10.1016/j.apcata.2019.01.004.
Harris, R. C. (2008). Physical Properties of Alcohol Based Deep Eutectic Solvents. PhD Thesis. University Of Leicester, Leicester. https://hdl.handle.net/2381/4560.
Hayyan, M., Hashim, M. A., Hayyan, A., Al-Saadi, M., Alnashef, I. M., Mirghani, M. E. S. dan Saheed, O. K. (2012). Are Deep Eutectic Solvents Benign or Toxic?. Chemosphere, 90, 7, 2193-2195. https://doi.org/10.1016/j.chemosphere.2012.11.004.
Hayyan, A., Hashim, M. A., Mjalli, F. S., Hayyan, M. dan Alnashef, I. M. (2013). A Novel Phosphonium-Based Deep Eutectic Catalyst for Biodiesel Production from Industrial Low Grade Crude Palm Oil. Chemical Engineering Science, 92, 81–88. https://doi.org/10.1016/j.ces.2012.12.024.
Hayyan, A., Hashim, M. A., Hayyan, M., Mjalli, F. S. dan Alnashef, I. M. (2014). A New Processing Route for Cleaner Production of Biodiesel Fuel Using a Choline Chloride Based Deep Eutectic Solvent. Journal of Cleaner Production, 65, 246–251. https://doi.org/10.1016/j.jclepro.2013.08.031.
Hue, B. T. B., Hong, L. T. P., Phuoc, N. T. N., Si, P. T., Matsubara, T., Kitaya, Y. dan Endo, R. (2019). Monoglyceride and Monoglyceride Derivatives from Glycerol Generated in Catfish-Based Biodiesel Production Process. IOP Conf Ser Mater Sci Eng, Institute of Physics Publishing, 620, 1-7. https:/doi.org/10.1088/1757-899x/620/1/012012.
Husraini, L. (2019). Esterifikasi Asam Palmitat Dengan Gliserol Menggunakan NADES (Natural Deep Eutectic Solvents) Sebagai Katalis. Skripsi. Universitas Riau, Pekanbaru. https://digilib.unri.ac.id/index.php?p=show_detail&id=89489.
Jangir, A. K., Bhawna, Verma, G., Pandey, S. dan Kuperkar, K. (2022). Design and Thermophysical Characterization of Betaine Hydrochloride-Based Deep Eutectic Solvents as A New Platform for CO2 Capture. New J. Chem., 46, 5332-5345. https://doi.org/10.1039/D1NJ05373F.
Kalhor, P. dan Ghandi, K. (2019). Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules, 24, 4012, 1-37. https://doi.org/10.3390/molecules24224012.
Kareem, M. A., Mjalli, F. S., Hashim, M. A. dan Alnashef, I. M. (2010). Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties. Journal Of Chemical & Engineering Data, 55, 11, 4632-4637. https://doi.org/10.1021/je100104v.
Kotwal, M., Deshpande, S. S. dan Srinivas, D. (2011). Esterification of Fatty Acids with Glycerol Over Fe-Zn Double-Metal Cyanide Catalyst. Catalysis Communications, 12, 1302-1309. http://dx.doi.org/10.1016%2Fj.catcom.2011.05.008.
Long, T., Deng, Y., Gan, S. dan Chen, J. (2010). Application of Choline Chloride·xZnCl2 Ionic Liquids for Preparation of Biodiesel. Chinese Journal of Chemical Engineering, 18, 2, 322-327. http://dx.doi.org/10.1016/S1004-9541(08)60359-6.
Luan, Q-j., Liu, L-j., Gong, S-w., Lu, J., Wang, X. dan Lv, D-m. (2018). Clean and Efficient Conversion of Renewable Levulinic Acid to Levulinate Esters Catalyzed by An Organic-Salt of H4SiW12O40. Process Safety and Environmental Protection, 117, 341–349. https://doi.org/10.1016/j.psep.2018.05.015.
Meneses, L., Santos, F., Gameiro, A. R., Paiva, A. dan Duarte, A. R. C. (2019). Preparation Of Binary and Ternary Deep Eutectic Systems. Journal of Vizualized Experiments, 152, 1-5. https://doi.org/10.3791/60326.
Mulia, K., Adam, D., Zahrina, I. dan Krisanti, E.A. (2018). Green Extraction of Palmitic Acid from Palm Oil Using Betaine-Based Natural Deep Eutectic Solvents. Ijtech, 9, 2, 335-344. https://doi.org/10.14716/ijtech.v9i2.1008.
Mulya, D. A. P., 2020. Esterifikasi Asam Palmitat Dengan Gliserol Menggunakan Katalis NADES (Natural Deep Eutectic Solvents) dari Betain Hidroklorida dan L-Arginin. Skripsi. Universitas Riau, Pekanbaru. https://digilib.unri.ac.id/index.php?p=show_detail&id=92592.
Muranaka, Y., Suzuki, T., Sawanishi, H., Hasegawa, I. dan Mae, K. (2014). Effective Production of Levulinic Acid from Biomass Through Pretreatment Using Phosphoric Acid, Hydrochloric Acid, or Ionic Liquid. Industrial and Engineering Chemistry Research, 53, 29, 11611–11621. https://doi.org/10.1021/ie501811x.
Nitbani, F. O., Tjitda, P. J. P., Nurohmah, B. A., Wogo, H. E. (2020). Preparation of Fatty Acid and Monoglyceride from Vegetable Oil. J Oleo Sci, 69, 277–295. https://doi.org/10.5650/jos.ess19168.
Nisa, F. (2019). NADES (Natural Deep Eutectic Solvents) Sebagai Katalis pada Esterifikasi Asam Stearat dengan Gliserol. Skripsi. Universitas Riau, Pekanbaru. https://digilib.unri.ac.id/index.php?p=show_detail&id=89487.
Ni, Y., Bi, Z., Su, H. dan Yan, L. (2019). Deep Eutectic Solvent (DES) as Both Solvent and Catalyst for Oxidation of Furfural to Maleic Acid and Fumaric Acid. Green Chemistry, 21, 5, 1075–1079. https://doi.org/10.1039/C8gc04022b.
Pandey, A., Rai, R., Pal, M. dan Pandey, S. (2014). How Polar Are Choline Chloride-Based Deep Eutectic Solvents?. Physical Chemistry Chemical Physics, 16, 4, 1559–1568. https://doi.org/10.1039/C3CP53456A.
Pawar, P. M., Jarag, K. J. dan Shankarling, G. S. (2011). Environmentally Benign and Energy Efficient Methodology for Condensation: An Interesting Facet to The Classical Perkin Reaction. Green Chemistry, 13, 8, 2130–2134. https://doi.org/10.1039/C0gc00712a.
Pouilloux, Y., Abro, S. dan Barrault, V. J. (1999). Reaction Of Glycerol with Fatty Acids in The Presence of Ion-Exchange Resins Preparation of Monoglycerides. Journal Of Molecular Catalysis A: Chemical, 149, 243-254. https://doi.org/10.1016/S1381-1169%2899%2900187-9.
Plotka-Wasylka, J., Guardia, M. D. L., Andrunch, V. dan Vilkova, M. (2020). Deep Eutectic Solvents vs Ionic Liquids: Similarities and Differences. Microchemical Journal, 159, 105539, 1-7. https://doi.org/10.1016/j.microc.2020.105539.
Rarokar, N. R., Menghani, S., Kerzare, D. Dan Khedekar, P. B. (2017). Progress In Synthesis of Monoglycerides for Use in Food and Pharmaceuticals. Journal of Food and Pharmaceutical Sciences, 5, 13-19. https://doi.org/10.4172/2472-0542.1000128.
Rogosic, M., Kristo, A. dan Zagajski, K. Z. (2020). Deep Eutectic Solvents Based on Betaine and Propylene Glycol as Potential Denitrification Agents: A Liquid-Liquid Equilibrium Study. Brazilian Journal of Chemical Engineering, 36, 4, 1703-1716. https://doi.org/10.1590/0104-6632.20190364s20190049.
Shafie, M. H., Yusof, R. dan Gan, C. Y. (2019). Synthesis Of Citric Acid Monohydrate-Choline Chloride Based Deep Eutectic Solvents (DES) and Characterization of Their Physicochemical Properties. Journal Of Molecular Liquids, 288, 111081, 1-6. https://doi.org/10.1016/j.molliq.2019.111081.
Shah, K. A., Parikh, J. K., Dholakiya, B. Z. dan Maheria, K. C. (2014). Fatty Acid Methyl Ester Production from Acid Oil Using Silica Sulfuric Acid: Process Optimization And Reaction Kinetics. Chemical Papers, 68, 4, 472–483. https://doi.org/10.2478/s11696-013-0488-4.
Shahbaz, K., Baroutian, S., Mjalli, F. S., Hashim, M. A. dan Alnashef, I. M. (2012). Thermochimica Acta Densities of Ammonium and Phosphonium Based Deep Eutectic Solvents: Prediction Using Artificial Intelligence and Group Contribution Techniques. Thermochimica Acta, 527, 59–66. https://doi.org/10.1016/j.tca.2011.10.010.
Sert, M. (2020). Catalytic Effect of Acidic Deep Eutectic Solvents for The Conversion of Levulinic Acid to Ethyl Levulinate. Renewable Energy, 153, 1155-1162. https://doi.org/10.1016/j.renene.2020.02.070.
Singh, D., Patidar, P., Ganesh, A. dan Mahajani, S. (2013). Esterification of Oleic Acid with Glycerol in The Presence of Supported Zinc Oxide as Catalyst. Industrial and Engineering Chemistry Research, 52, 42, 14776–14786. https://doi.org/10.1021/ie401636v.
Singh, B. S., Lobo, H. R., Pinjari, D. V., Jarag, K. J., Pandit, A. B. dan Shankarling, G. S. (2013). Ultrasound and Deep Eutectic Solvent (DES): A Novel Blend of Techniques for Rapid and Energy Efficient Synthesis of Oxazoles. Ultrasonics Sonochemistry, 20, 1, 287–293. https://doi.org/10.1016/j.ultsonch.2012.06.003.
Skulcova, A., Russ, A., Jablonsky, M. dan Sima, J. (2018). The pH Behavior of Seventeen Deep Eutectic Solvents. Bioresources, 13, 3, 5042-5051. http://dx.doi.org/10.15376/biores.13.3.5042-5051.
Smith E. L., Abbottt, A. P. dan Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications, Chemical Reviews, 114, 11060-11082. http://dx.doi.org/10.1021/Cr300162p.
Tang, B., Lee, Y. J., Park, H. E. dan Row, K. H. (2014). Pretreatment Of Biodiesel by Esterification of Palmitic Acid in Brønsted-Lowry Acid Based Deep Eutectic Solvents. Analytical Letters, 47, 14, 2443–2450. https://doi.org/10.1080/00032719.2014.908386.
Tosun, E., Yilmaz, A. C., Ozcanli, M. dan Aydin, K. (2014). Determination of Effects of Various Alcohol Additions into Peanut Methyl Ester on Performance and Emission Characteristics of a Compression Ignition Engine. Fuel, 126, 38–43. https://doi.org/10.1016/j.fuel.2014.02.037.
Ünlü, A. E., Arikaya, A., Altundağ, A. dan Takaç, S. (2020). Remarkable Effects of Deep Eutectic Solvents on The Esterification of Lactic Acid with Ethanol Over Amberlyst-15. Korean Journal of Chemical Engineering, 37, 1, 46–53. https://doi.org/10.1007/S11814-019-0385-9.
Vanda, H., Dai, Y., Wilson, E. G., Verpoorte, R. dan Choi, Y. H. (2018). Green Solvents from Ionic Liquids and Deep Eutectic Solvents to Natural Deep Eutectic Solvents. Comptes Rendus Chim., 21, 6, 628–638. https://doi.org/10.1016/j.crci.2018.04.002.
Wee, L. H., Lescouet, T., Fritsch, J., Bonino, F., Rose, M., Sui, Z., Garrier, E., Packet, D., Borgiga, S., Kaskel, S., Herskowitz, M., Farruseng, D. dan Martens, J. A. (2013). Synthesis of Monoglycerides by Esterification of Oleic Acid with Glycerol in Heterogeneous Catalytic Process Using Tin–Organic Framework Catalyst. Science+Business Media, New York.
Williamson, S. T., Shahbaz, K., Mjalli, F. S., Alnashef, I. M. dan Farid, M. M. (2017). Application Of Deep Eutectic Solvents as Catalysts for The Esterification of Oleic Acid with Glycerol. Renewable Energy, 114, 480–488. https://doi.org/10.1016/j.renene.2017.07.046.
Xiong, X., Zhang, H., Lai, S. L., Gao, J. dan Gao, L. (2020). Lignin Modified by Deep Eutectic Solvents as Green, Reusable, and Bio-Based Catalysts for Efficient Chemical Fixation of CO2. Reactive and Functional Polymers, 149, https://doi.org/10.1016/j.reactfunctpolym.2020.104502.
Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipic, M., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G. G., Leblanc, J. C., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R. A., … Lambre, C., 2017. Re-Evaluation of Mono-And Di-Glycerides of Fatty Acids (E471) As Food Additives. EFSA Journal, 15, 11, 1-43. https://doi.org/10.2903/j.efsa.2017.5045.
Zahrina, I., Nasikin, M., Krisanti, E. dan Mulia, K. (2018). Deacidification of Palm Oil Using Betaine Monohydrate-Based Natural Deep Eutectic Solvents. Food Chemistry, 240, 490–495. https://doi.org/10.1016/j.foodchem.2017.07.132.
Zhang, Q., De Oliveira Vigier, K., Royer, S. dan Jérôme, F. (2012). Deep Eutectic Solvents: Syntheses, Properties and Applications. Chemical Society Reviews, 41, 21, 7108–7146. https://doi.org/10.1039/C2cs35178a.
Zhang, T., Shahbaz, K. Dan Farid, M. M., 2020. Glycerolysis of Free Fatty Acid in Vegetable Oil Deodorizer Distillate Catalyzed by Phosphonium-Based Deep Eutectic Solvent. Renewable Energy, 160, 363-373. https://doi.org/10.1016/j.renene.2020.07.026.
Zhekenov, T., Toksanbayev, N., Kazakbayeva, Z., Shah, D. dan Mjalli, F.S. (2017). Formation of Type III Deep Eutectic Solvents and Effect of Water on Their Intermolecular Interactions. Fluid Phase Equilibria, 441, 43-48. https://doi.org/10.1016/j.fluid.2017.01.022.