Date Log
Tinjauan Pengaruh Suhu dan Massa Katalis Terhadap Yield Bio-Oil Hasil Pirolisis Ampas Tebu (Sugarcane Bagasse)
Corresponding Author(s) : Syaiful Bahri
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 6 No 2 (2025): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
Sugarcane bagasse, as lignocellulosic biomass waste, has great potential for producing bio-oil through pyrolysis, which is the process of converting biomass into bio-oil, biochar, and gas. However, the main challenge in bio-oil production is reducing oxygen content and improving its quality. Therefore, this study evaluates the effect of temperature and catalyst use on bio-oil yield from sugarcane bagasse pyrolysis. The method used was a literature review, collecting quantitative data from various relevant studies on sugarcane bagasse pyrolysis and its operational conditions. The results showed that a temperature of 500°C yielded the optimal bio-oil yield of 60.4%, with higher temperatures increasing calorific value but reducing oxygen content. Additionally, the use of a catalyst can reduce oxygen content and improve bio-oil quality. In conclusion, temperature and the selection of the appropriate catalyst play a key role in improving the quality and efficiency of bio-oil production from sugarcane bagasse, which can support efforts toward transitioning to more sustainable energy sources.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Asadullah, M., Rahman, M. A., Ali, M. M., Rahman, M. S., Motin, M. A., Sultan, M. B., & Alam, M. R. (2007). Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel, 86(16), 2514–2520. https://doi.org/10.1016/j.fuel.2007.02.007
Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A: General, 212(1–2), 17–60. https://doi.org/10.1016/S0926-860X(00)00843-7
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Dewangan, A., Pradhan, D., & Singh, R. K. (2016). Co-pyrolysis of sugarcane bagasse and low-density polyethylene: Influence of plastic on pyrolysis product yield. Fuel, 185, 508–516. https://doi.org/10.1016/j.fuel.2016.08.011
Garcı̀a-Pèrez, M., Chaala, A., & Roy, C. (2002). Co-pyrolysis of sugarcane bagasse with petroleum residue. Part II. Product yields and properties. Fuel, 81(7), 893–907. https://doi.org/10.1016/S0016-2361(01)00215-0
Gonçalves, E. V., Seixas, F. L., de Souza Scandiuzzi Santana, L. R., Scaliante, M. H. N. O., & Gimenes, M. L. (2017a). Economic trends for temperature of sugarcane bagasse pyrolysis. Canadian Journal of Chemical Engineering, 95(7), 1269–1279. https://doi.org/10.1002/cjce.22796
Gonçalves, E. V., Seixas, F. L., de Souza Scandiuzzi Santana, L. R., Scaliante, M. H. N. O., & Gimenes, M. L. (2017b). Economic trends for temperature of sugarcane bagasse pyrolysis. The Canadian Journal of Chemical Engineering, 95(7), 1269–1279. https://doi.org/10.1002/cjce.22796
Hameed, S., Sharma, A., Pareek, V., Wu, H., & Yu, Y. (2019). A review on biomass pyrolysis models: Kinetic, network and mechanistic models. In Biomass and Bioenergy (Vol. 123, pp. 104–122). Elsevier Ltd. https://doi.org/10.1016/j.biombioe.2019.02.008
Hani, F. F. B., & Hailat, M. M. (2016). Production of Bio-Oil from Pyrolysis of Olive Biomass with/without Catalyst. Advances in Chemical Engineering and Science, 06(04), 488–499. https://doi.org/10.4236/aces.2016.64043
Ikrom. (2023, December 21). Potensi Energi Terbarukan Indonesia Baru Tergarap 0,3% sampai 2021. https://www.esdm.go.id/Id/Media-Center/Arsip-Berita/Potensi-Energi-Baru-Terbarukan-Ebt-Indonesia.
Islam, M. R., Parveen, M., & Haniu, H. (2010). Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. Bioresource Technology, 101(11), 4162–4168. https://doi.org/10.1016/j.biortech.2009.12.137
Kumar R, Strezav V, Kan T, Weldekidan H, & He J. (2019). Investigating the effect of Cu/zeolite deoxygenatian of bio-oil from pyrolysis of pine wood. Energy Procedia, 160, 186–193.
Kumar, R., Strezov, V., Weldekidan, H., He, J., Singh, S., Kan, T., & Dastjerdi, B. (2023). Lignocellulose Biomass Pyrolysis for Bio-Oil Production: Biomass Pre-treatment Methods for Production of Drop-In Fuels. In Biowaste and Biomass in Biofuel Applications. https://doi.org/10.1201/9781003265597-8
Mentzel, U. V., & Holm, M. S. (2011). Utilization of biomass: Conversion of model compounds to hydrocarbons over zeolite H-ZSM-5. Applied Catalysis A: General, 396(1–2), 59–67. https://doi.org/10.1016/j.apcata.2011.01.040
Montoya, J. I., Valdés, C., Chejne, F., Gómez, C. A., Blanco, A., Marrugo, G., Osorio, J., Castillo, E., Aristóbulo, J., & Acero, J. (2015). Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. Journal of Analytical and Applied Pyrolysis, 112, 379–387. https://doi.org/10.1016/j.jaap.2014.11.007
Prabhakara, H. M., Bramer, E. A., & Brem, G. (2022). Hydrotalcite as a deoxygenation catalyst in fast pyrolysis of biomass for the production of high quality bio-oil. Journal of Analytical and Applied Pyrolysis, 161. https://doi.org/10.1016/j.jaap.2022.105431
Rabiu, S. D., Auta, M., & Kovo, A. S. (2018). An upgraded bio-oil produced from sugarcane bagasse via the use of HZSM-5 zeolite catalyst. Egyptian Journal of Petroleum, 27(4), 589–594. https://doi.org/10.1016/j.ejpe.2017.09.001
Saif, A. G. H., Wahid, S. S., & Ali, M. R. O. (2021). Characterization of Pyrolytic Oil and Char Obtained from Sugarcane Bagasse Pyrolysis. Advanced Engineering Forum, 39, 75–84. https://doi.org/10.4028/www.scientific.net/aef.39.75
Sari, W., Sumarno, A., & Lestari, D. (2023). Potensi Produksi Bio-Oil dengan Metode Pirolisis Katalitik Menggunakan Katalis Zeolit dari Ampas Tebu: Studi Literatur. VIII(2).
Schmitt, C. C., Moreira, R., Neves, R. C., Richter, D., Funke, A., Raffelt, K., Grunwaldt, J. D., & Dahmen, N. (2020). From agriculture residue to upgraded product: The thermochemical conversion of sugarcane bagasse for fuel and chemical products. Fuel Processing Technology, 197. https://doi.org/10.1016/j.fuproc.2019.106199
Shutterstock. (2024). Indonesia Energy Transition Outlook 2024 IESR Institute for Essential Services Reform. www.iesr.or.id
Sohaib, Q., Muhammad, A., & Younas, M. (2017). Fast pyrolysis of sugarcane bagasse: Effect of pyrolysis conditions on final product distribution and properties. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(2), 184–190. https://doi.org/10.1080/15567036.2016.1212292
Tanjung, M. H., Larasaty, A., Habibie, R. F. N., Ilmi, A. A., Sufi, S. B., Bahri, S., & Nugraha, M. I. (2024). Sustainable bio energy: the potential of Ni-Fe/NZA as a catalyst for pyrolysis of sugarcane bagasse waste (Saccharum officinarum L.) for bio-oil production. Konversi, 13(2). https://doi.org/10.20527/k.v13i2.19988