Date Log
Optimasi Proses Cooking Tandan Kosong Kelapa Sawit dengan Metode Soda Metilantrakuinon (MAQ) dan Digester Liquor Tersirkulasi untuk Produksi Dissolving Pulp
Corresponding Author(s) : Rawdatul Fadila
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 6 No 2 (2025): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
Dissolving pulp is a raw material in the textile, plastic, and other cellulose-derived products industries, which has a high content of α-cellulose (≥90%), high degree of brightness, low hemicellulose and lignin content. Demand for dissolving pulp continues to increase, so a sustainable alternative raw material source is required. Empty bunches from oil palm industry waste can potentially be processed into dissolving pulp. This study aims to determine the effect of cooking temperature, cooking time and NaOH concentration on yield, kappa number and viscosity and to obtain the optimum conditions for cooking oil palm empty bunches for dissolving pulp using 2-methylantraquinone (MAQ) soda with a circulating liquor digester. Prehydrolysis of the raw materials was conducted at 150 °C for 180 min, followed by soda cooking with 0.1% MAQ at 140–160 °C for 120–240 min using NaOH concentrations of 10–20%. Optimization was conducted using Design Expert software with Response Surface Methodology (RSM) model Central Composite Design (CCD). Pulp from the cooking process produced yields with a range of 23.4-51.56%, kappa numbers of 6.97-19.44 and viscosity of 6.21-9.13 cP. Optimal conditions were obtained from RSM at 160°C, 120 minutes cooking time, and 20% NaOH concentration, with an estimated yield of 46.9%, kappa number of 10.22, and viscosity of 7.06 cP. This study confirms that the production of dissolving pulp from oil palm empty fruit bunches for dissolving pulp with MAQ soda process and circulating digester liquor was successfully carried out.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Behin, J. dan Zeyghami, M. (2009). Dissolving Pulp from Corn Stalk Residue and Waste Water of Merox Unit. Chemical Engineering Journal. 152(1), 26–35. https://doi.org/10.1016/j.cej.2009.03.024.
Cao, S., Ma, X., Lin, L., Huang, F., Huang, L., Chen, L. (2014). Morphological and Chemical Characterization of Green Bamboo (Dendrocalamopsis oldhami (Munro) Keng f.) for Dissolving Pulp Production. Bioresources. 9(3), 4528-4539.
Dien, L. Q., Cuong, T. D., Hoang, P. H., Hoa, D. T. and Thanh, L. T. (2015). Production of Dissolving Cellulose from Rice Straw in Vietnam by Pre-hydrolysis Kraft Pulping. International Journal of Chemistry & Materials Sciences. 1(3), 359–365.
Erwinsyah, Sugesty., S, Hidayat., T. (2012). Pembuatan Pulp Mekanis Tandan Kosong Kelapa Sawit untuk Kertas Lainer dan Medium. Jurnal Selulosa. 2(1), 8–13.
Evelyn., Sunarno., Andrio, D., Aman, A., Ohi, H. (2022). Nypa fruticans Frond Wate for Pure Cellulose Utilizing Sulphur-Free and Totally Chlorine-Free Processes. Moleculles. 27, 5662. https://doi.org/10.3390/molecules27175662.
Evelyn., Yusnimar., Fermi., M, I., Saputra, E., Utami, S, P., Komalasari., Rahmi, S, W., Ohi, H. (2024). Cellulose and Lignin Purified from Metroxylon Sagu Palm Fronds by a New Technology with 2-Methylanthraquinone Cooking and Peroxymonosulfuric Acid Bleaching. Journal of Wood Science. 70 (1), 16.
Francis, R.C., Shin, S.J., Omori, S., Amidon, T.E., Blain, T.J., (2006). Soda pulping of hardwoods catalyzed by anthraquinone and methyl substituted anthraquinones. Journal of Wood Chemistry and Technology. 26(2), 141–152. https://doi.org/10.1080/02773810600701737.
Hammerle, F. M. (2011). The Cellulose Gap (The Future of Cellulose Fibres). Lenzinger Berichte. 89, pp.12–21.
Harsono, H., Putra, A, S., Maryana, R., Rizaluddin, A, T., H’ng, Y, Y., Nakagawa-izumi, A., Ohi, H., (2016). Preparation of Dissolving Pulp From Oil Palm Empty Fruit Bunch By Prehydolysis Soda-Anthraquinone Cooking Method. Journal of Wood Science. 62, 65–73.
Hon, D. N. S. and Shiraishi, N. (2001). Wood and Cellulosic Chemistry, Revised, and Expanded. Marcel Dekker, Inc. https://doi.org/10.1201/9781482269741.
Jarriault, B. A., Lachenal, D., Chirat, C. and Heux, L. (2014). Upgrading Softwood Bleached Kraft Pulp to Dissolving Pulp by Cold Caustic Treatment and Acid-Hot Caustic Treatment. Industrial Crops & Products. 65, 1–7. https://doi.org/10.1016/j.indcrop.2014.09.051.
Miati, Jemi, R., dan Cipta, E. (2015). Kajian pulping soda berbahan baku pelepah pisang (Musa Paradisiaca). Jurnal Hutan Tropika, 10(2), 24–30.
Miao, Q., Chen, L., Huang, L., Tian, C., Zheng, L. and Ni, Y. (2014). A Process for Enhancing the Accessibility and Reactivity of Hardwood Kraft-Based Dissolving Pulp for Viscose Rayon Production by Cellulase Treatment. Bioresource Technology. 154, 109–113.
Montgomery, D. C. A. S. U. (2017). Design and Analysis of Experiments Ninth Edition. www.wiley.com/go/permissions.%0Ahttps://lccn.loc.gov/2017002355.
Rahman, A., Rahmadani, E., & Oksana. (2020). Perubahan Sifat Kimia Tandan Kosong Kelapa Sawit yang Difermentasi dengan EM4 pada Dosis dan Lama Pemeraman yang Berbeda. Jurnal Agroteknologi, 6(1), 1–8.
Sixta, H., (2006). Handbook of Pulp. Wiley-VCH, Herbert Sixta.
Sudiyani, Y., Styarini, D., Triwahyuni, E., Sudiyarmanto., Sembiring, K, C., Aristiawan, Y., Abimanyu, H., Han, M, H. (2013). Utilization of Biomass Waste Empty Fruit Bunch Fiber of Palm Oil for Bioethanol Production Using Pilot – Scale Unit. International Conference on Sustainable Energy Engineering and Application. Energy Procedia. 32, 31 – 38.
Wang, N. and Chen, H. Z. (2013). Manufacture of Dissolving Pulps from Cornstalk by Novel Method Coupling Steam Explosion and Mechanical Carding Fractionation. Bioresource Technology. 139, 59–65.
Wu, C., Zhou, S., Li, R., Wang, D., Zhao, C. (2015). Reactivity Improvement of Bamboo Dissolving Pulp by Xylanase Modification. Bioresources. 10(3), 4970-4977.