Date Log
Optimasi Bio-char Hasil Proses Katalitik Pirolisis Palm Kernel Expeller (PKE) Menggunakan Katalis NiMo/NZA dengan Pendekatan RSM
Corresponding Author(s) : Fernando Sihotang
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 6 No 2 (2025): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
The increasing demand for renewable energy sources has driven interest in biomass-based alternatives, particularly bio-char derived from palm kernel expeller (PKE), an abundant by-product of Indonesia’s palm oil industry. This study aims to optimize bio-char production through catalytic pyrolysis of PKE using a NiMo/NZA catalyst, employing a Response Surface Methodology (RSM) with a Box-Behnken design. Key variables investigated include T (°C) (400–500 °C), catalyst loading (2–6%), and metal loading (0–4% wt). The NiMo/NZA catalyst was synthesized through acid activation, metal impregnation, and thermal treatment, and its structure was confirmed using FTIR analysis. Pyrolysis experiments were conducted in a fixed-bed reactor under nitrogen and hydrogen atmospheres. The highest bio-char yield of 39.38% was obtained at 400 °C with 2% catalyst and 4% metal loading. Optimization modeling using Minitab v.22 indicated that the optimal conditions were at 400 °C, 6% catalyst, and 2.91% metal loading, resulting in a predicted yield of 36.82% with a desirability of 0.979. Statistical analysis showed a significant influence of catalyst and metal loading over temperature on bio-char yield (p-value < 0.05; Adjusted R² = 0.9236). These results support the potential of catalytic pyrolysis with tailored catalysts to enhance bio-char production from palm biomass, contributing to waste valorization and renewable fuel development.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., & Ok, Y. S. (2020). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071
Bahri, S., Saputra, E., Herman, S., Muhdarina, & Marita, E. (2024). Sintesis dan karakterisasi katalis nikel zeolit alam Ni/NZA. Journal of the Bioprocess, Chemical, and Environmental Engineering Science, 5(1). https://jbchees.ejournal.unri.ac.id/index.php/jbchees
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Chee, J. M., et al. (2023). Catalytic pyrolysis of palm kernel shell: Effect of temperature and catalyst dosage on biochar and bio-oil yield. Renewable Energy, 206, 1324–1332. https://doi.org/10.1016/j.renene.2022.12.043
Chen, D., Yin, L., Wang, H., & He, P. (2019). Pyrolysis technologies for municipal solid waste: A review. Waste Management, 34(12), 2466–2486. https://doi.org/10.1016/j.wasman.2013.07.003
Ferreira, S., & Patiño, D. (2015). Optimization of biochar production through pyrolysis of biomass using response surface methodology. Journal of Analytical and Applied Pyrolysis, 115, 227–235. https://doi.org/10.1016/j.jaap.2015.08.012
Kementerian Koordinator Bidang Perekonomian Republik Indonesia. (2022). Akselerasi net zero emissions, Indonesia deklarasikan target terbaru penurunan emisi karbon. https://ekon.go.id/publikasi/detail/4652/akselerasi-net-zero-emissions-indonesia-deklarasikan-target-terbaru-penurunan-emisi-karbon
Lehmann, J., & Joseph, S. (Eds.). (2015). Biochar for environmental management: Science, technology and implementation (2nd ed.). Routledge.
Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., … Pan, G. (2021). Soil organic carbon sequestration after biochar application: A global meta-analysis. Agronomy, 11(12), 2474. https://doi.org/10.3390/agronomy11122474
Montgomery, D. C. (2017). Design and analysis of experiments (9th ed.). John Wiley & Sons.
Palm Oil Agribusiness Strategic Policy Institute (PASPI). (2024). Kegunaan cangkang sawit & studi kasus. https://palmoilina.asia/sawit-hub/kegunaan-cangkang-sawit/
Serevina, V., Pambudi, R. D., Nugroho, D. A., Program Fisika, S., Fisika, P., Matematika, F., Ilmu, D., & Alam, P. (2021). Pelatihan pemanfaatan limbah gergaji dan cangkang telur ayam untuk membuka usaha briket biomassa. Jurnal Pemberdayaan Masyarakat Sains (SAINS), 1(11). https://doi.org/10.21009/jpm-sains.v1i1.18748
Shen, Y., Zhao, P., Shao, Q., Takahashi, F., & Yoshikawa, K. (2015). In-situ catalytic upgrading of bio-oil produced from rice husk pyrolysis using rice husk char-supported nickel catalyst. Renewable and Sustainable Energy Reviews, 50, 289–304. https://doi.org/10.1016/j.rser.2015.04.183
Shrestha, R. K., Jacinthe, P. A., Lal, R., Lorenz, K., Singh, M. P., … Ren, W. (2023). Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. Journal of Environmental Quality, 52(4), 769–798. https://doi.org/10.1002/jeq2.20475
Sun, W., Yan, Y., Wei, Y., Ma, J., Niu, Z., & Hu, G. (2025). Catalytic pyrolysis of biomass: A review of zeolite, carbonaceous, and metal oxide catalysts. Nanomaterials, 15(7), 493. https://doi.org/10.3390/nano15070493
U.S. Energy Information Administration. (2023). International energy outlook 2023 – U.S. Energy Information Administration. https://www.eia.gov/outlooks/ieo/
Wang, S., Guo, X., Wang, K., & Luo, Z. (2016). Influence of pyrolysis temperature on structure and oil production from sawdust pyrolysis. Energy & Fuels, 30(12), 10563–10569. https://doi.org/10.1021/acs.energyfuels.6b01607
Zhang, X., Lei, H., Zhu, L., Zhao, C., Wu, J., & Chen, S. (2017). Catalytic upgrading of bio-oil using Ni/HZSM-5 in supercritical ethanol. Journal of Analytical and Applied Pyrolysis, 124, 355–364. https://doi.org/10.1016/j.jaap.2016.12.014
Zhang, Y., Liu, C., Lin, Q., & Lal, R. (2021). Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C:N ratio and soil pH: A global meta-analysis. Science of The Total Environment, 771, 145594. https://doi.org/10.1016/j.scitotenv.2021.145594