Date Log
Optimization of Bioethanol Production from Cassava through Fermentation Stimulant with Addition of Alpha-Amylase Enzyme
Corresponding Author(s) : Indra Purnama
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 4 No 2 (2023): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
Bioethanol, as a substitute for fuel, presents significant advantages such as environmentally friendly exhaust emissions, high octane value, and a reduction in the use of hazardous additives. The utilization of carbohydrate-rich alternatives as bioethanol feedstock is gaining prominence, particularly root vegetables like cassava. The objective of this research is to obtain bioethanol from cassava through a fermentation stimulant process involving cellulase enzyme and Saccharomyces caravisiase. In the long term, the overarching goal is to establish an alternative energy source with bioethanol production technology derived from cassava. This study comprises three treatments, incorporating the addition of alpha-amylase enzyme at 0.5, 0.1, and 0.15 mL, with a fermentation duration of 56 hours. The research findings reveal that the addition of 0.5 mL of alpha-amylase enzyme produces optimal bioethanol with the highest yield. These results not only underscore the potential of cassava as a primary bioethanol feedstock but also make a significant contribution to the development of efficient and sustainable bioethanol production technology.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Anindyawati, T. (2009). Prospek Enzim dan Limbah Lignoselulosa untuk Produksi Bioetanol. Pusat Penelitian Bioteknologi LIPI, Bogor.
Azad, A., Yesmin, N., Sarker, S. K., Sattar, A., & Karim, R. (2014). Optimum Conditions for Bioethanol Production from Potato of Bangladesh. Advances in Bioscience and Biotechnology, 5, 501- 507.
de Almeida, M. A., & Colombo, R. (2023). Production chain of first-generation sugarcane bioethanol: characterization and value-added application of wastes. BioEnergy Research, 16(2), 924-939.
Erickson, P., Lazarus, M., & Piggot, G. (2018). Limiting fossil fuel production as the next big step in climate policy. Nature Climate Change, 8(12), 1037-1043.
Hoang, A. T., Huang, Z., Nižetić, S., Pandey, A., Nguyen, X. P., Luque, R., Ong, H. C., Said, Z., Le, T. H, Pham, V. V. (2022). Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International journal of hydrogen energy, 47(7), 4394-4425.
Mishra, K., Siwal, S. S., Saini, A. K., & Thakur, V. K. (2023). Recent update on gasification and pyrolysis processes of lignocellulosic and algal biomass for hydrogen production. Fuel, 332, 126169.
Nazar, M., Xu, L., Ullah, M. W., Moradian, J. M., Wang, Y., Sethupathy, S., Iqbal, B., Nawaz, M. Z., & Zhu, D. (2022). Biological delignification of rice straw using laccase from Bacillus ligniniphilus L1 for bioethanol production: A clean approach for agro-biomass utilization. Journal of Cleaner Production, 360, 132171.
Nevez, M.A., Toshinori, K., Naoto, and S., Kiwamu, S. 2006. Production of Alcohol by Simultaneous Saccharification and Fermentasion of Low-grade Wheat Flour. Brazilian Archives of Biology and Technology International Journal, 49(3), 481- 490.
Nurdyastuti, I. (2008). Prospek Pengembangan Biofuel sebagai Substitusi Bahan Bakar Minyak. http://www.sinar harapan.com. 21 November 2014.
Padil, Putra, M. D., Hidayat, M., Kasiamdari, R. S., Mutamima, A., Iwamoto, K., Darmawan, M. A., & Gozan, M. (2023). Mechanism and kinetic model of microalgal enzymatic hydrolysis for prospective bioethanol conversion. RSC advances, 13(31), 21403-21413.
Prasasti, D. R., & Herdyastuti, N. (2022). Pengaruh Penambahan Enzim α-AMYLASE dan Lama Waktu Inkubasi dalam Pembuatan Bioetanol dari Biji Nangka: Bioetanol; Enzim α-amilase; Etanol; Inkubasi Biji Nangka. Indonesian Chemistry and Application Journal, 5(1), 15-20.
Purnama, I., Trisunaryanti, W., Wijaya, K., Mutamima, A., Oh, W. C., Boukherroub, R., Aziz, M., 2023. Multi-Pathways for Sustainable Fuel Production from Biomass Using Zirconium-Based Catalysts: A Comprehensive Review. Energy Technology, In press.
Purnama, I., Abe, M., Hada, M., Kubo, Y., & Mulyana, J. Y. (2019). Factors influencing the photoelectrochemical device performance sensitized by ruthenium polypyridyl dyes. Dalton Transactions, 48(2), 688-695.
Purnama, I., Kubo, Y., & Mulyana, J. Y. (2018). A robust ruthenium complex with nonyl-substituted bpy ligand for dye-sensitized photoelectrochemical cell application. Inorganica Chimica Acta, 471, 467-474.
Putri, L. S. E and Fachruroji. (2011). Optimasi Produk Bioetanol dari Ubi Kayu (Manihot Utilissima POHL) Menggunakan Aspergillus Niger dan Rhizopus oryzae. Berkala Penelitian, 4: 87-90.
Rewlay-ngoen, C., Papong, S., Onbhuddha, R., & Thanomnim, B. (2021). Evaluation of the environmental performance of bioethanol from cassava pulp using life cycle assessment. Journal of Cleaner Production, 284, 124741.
Rizati, M. A. (2022). 10 Negara Produsen Singkong Terbesar di Dunia, Indonesia Masuk Daftar? https://databoks.katadata.co.id/datapublish/2022/04/13/10-negara-produsen-singkong-terbesar-di-dunia-indonesia-masuk-daftar#:~:text=Indonesia%20tercatat%20mampu%20memproduksi%20singkong,3%20juta%20singkong%20pada%202020.&text=Di%20Indonesia%20sentra%20produksi%20singkong,Jawa%20Barat%20dan%20DI%20Yogyakarta.
Salmahaminati, Abe, M., Purnama, I., Mulyana, J. Y., & Hada, M. (2020). Density Functional Study of Metal-to-Ligand Charge Transfer and Hole-Hopping in Ruthenium (II) Complexes with Alkyl-Substituted Bipyridine Ligands. ACS omega, 6(1), 55-64.
Soeprijanto, S., Qomariyah, L., Hamzah, A., & Altway, S. (2022). Bioconversion of Industrial Cassava Solid Waste (Onggok) to Bioethanol Using a Saccharification and Fermentation process. International Journal of Renewable Energy Development, 11(2).
Sukandar, U., & dkk. (2011). Sakarifikasi Pati Ubi Kayu Menggunakan Amilase Aspergilus Niger Itb Cc L74. Jurnal Teknik Kimia Indonesia, 1-8.
Tyagi, S., Lee, K. J., Mulla, S. I., Garg, N., & Chae, J. C. (2019). Production of bioethanol from sugarcane bagasse: current approaches and perspectives. Applied microbiology and bioengineering, 21-42.
Yao, T., Nguyen, H. T. K., Mutamima, A., Maki, T., Guo, Y., Sakurai, M., & Kameyama, H. (2015). Steam reforming of ethanol over electrically-heated anodic aluminum catalysts for hydrogen production. International Journal of Hydrogen Energy, 40(35), 11863-11871.