Date Log
Review: Komposit rGO-TiO2 dalam Proses Fotokatalisis untuk Menghilangkan Kontaminan Warna pada Air
Corresponding Author(s) : Desi Heltina
Journal of Bioprocess, Chemical and Environmental Engineering Science,
Vol 5 No 2 (2024): Journal of Bioprocess, Chemical, and Environmental Engineering
Abstract
This article explains various synthesis methods for rGO-TiO2 materials and their applications in colored wastewater treatment. The methods discussed include hydrothermal, sol-gel, ultrasonication, wet impregnation, electrospinning, and electrophoresis. Each method has its own advantages: the hydrothermal and sol-gel methods enhance photocatalytic activity through the integration of TiO2 and rGO; ultrasonication and wet impregnation methods are effective in uniquely improving photocatalytic performance; while electrophoresis (EPD) and electrospinning methods excel in forming high-quality coatings and nanofibers that boost photocatalytic activity. The choice of method depends on the specific application and desired material properties. The hydrothermal and sol-gel methods are well-suited for photocatalytic applications, while EPD and electrospinning methods are superior for other applications, such as improving photovoltaic performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
Akyüz, D. (2021). rGO-TiO2-CdO-ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue. 48(April), 480–488.
Al-Nuaim, M. A., Alwasiti, A. A., & Shnain, Z. Y. (2023). The photocatalytic process in the treatment of polluted water. Chemical Papers, 77(2), 677–701. https://doi.org/10.1007/s11696-022-02468-7
Alam, U., Khan, A., Ali, D., Bahnemann, D., & Muneer, M. (2018). Comparative photocatalytic activity of sol-gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Advances, 8(31), 17582–17594. https://doi.org/10.1039/c8ra01638k
Alizadeh, S., Fallah, N., & Nikazar, M. (2019). An ultrasonic method for the synthesis, control and optimization of CdS/TiO 2 core-shell nanocomposites. RSC Advances, 9(8), 4314–4324. https://doi.org/10.1039/c8ra10155h
Alkharabsheh, S., McMichael, S., Singhal, A., Rioja-Cabanillas, A., Zamora, P., Monsalvo, V., Rogalla, F., Byrne, J. A., & Fernández-Ibáñez, P. (2024). Bench-scale photoelectrocatalytic reactor utilizing rGO-TiO2 photoanodes for the degradation of contaminants of emerging concern in water. Process Safety and Environmental Protection, 182(October 2023), 833–844. https://doi.org/10.1016/j.psep.2023.12.009
Aritonang, A. B., Parwaty, P., Wibowo, M. A., Ardiningsih, P., & Adhitiyawarman, A. (2023). Sintesis TiO2-rGO Dengan Pereduksi Alumunium untuk Fotokatalisis Degradasi Metilen Biru dibawah Irradiasi Sinar Tampak. Equilibrium Journal of Chemical Engineering, 6(2), 150. https://doi.org/10.20961/equilibrium.v6i2.65518
Ayala, I. V., Mejía-Ospino, E., Gonzalez-Arias, C., Cabanzo-Hernández, R., & V-Niño, E. D. (2024). Evaluation of sol-gel and solvothermal method on titanium dioxide and reduced graphene oxide nanocomposite. Journal of Physics: Conference Series, 2726(1). https://doi.org/10.1088/1742-6596/2726/1/012003
Babu, S. G., Karthik, P., John, M. C., Lakhera, S. K., Ashokkumar, M., Khim, J., & Neppolian, B. (2019). Synergistic effect of sono-photocatalytic process for the degradation of organic pollutants using CuO-TiO2/rGO. Ultrasonics Sonochemistry, 50(September 2018), 218–223. https://doi.org/10.1016/j.ultsonch.2018.09.021
Babuji, P., Thirumalaisamy, S., Duraisamy, K., & Periyasamy, G. (2023). Human Health Risks due to Exposure to Water Pollution: A Review. Water (Switzerland), 15(14), 1–15. https://doi.org/10.3390/w15142532
Barai, D. P., Bhanvase, B. A., & Saharan, V. K. (2019). Reduced Graphene Oxide-Fe 3 O 4 Nanocomposite Based Nanofluids: Study on Ultrasonic Assisted Synthesis, Thermal Conductivity, Rheology, and Convective Heat Transfer [Research-article]. Industrial and Engineering Chemistry Research, 58(19), 8349–8369. https://doi.org/10.1021/acs.iecr.8b05733
Daryakenari, A. A., Mosallanejad, B., Zare, E., Daryakenari, M. A., Montazeri, A., Apostoluk, A., & Delaunay, J. J. (2021). Highly efficient electrocatalysts fabricated via electrophoretic deposition for alcohol oxidation, oxygen reduction, hydrogen evolution, and oxygen evolution reactions. International Journal of Hydrogen Energy, 46(10), 7263–7283. https://doi.org/10.1016/j.ijhydene.2020.11.261
Deraz, N. M. (2018). The comparative jurisprudence of catalysts preparation methods: II. Deposition-precipitation and adsorption methods. Journal of Industrial and Environmental Chemistry, 2(5), 1–5. http://www.alliedacademies.org/journal-industrial-environmental-chemistry/
Deshmukh, S. P., Kale, D. P., Kar, S., Shirsath, S. R., Bhanvase, B. A., Saharan, V. K., & Sonawane, S. H. (2020). Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano-Structures and Nano-Objects, 21, 100407. https://doi.org/10.1016/j.nanoso.2019.100407
Elsayed Talat Helmy; Ahmed El Nemr; Mahmoud Mousa; Esam Arafa; Shady Eldafrawy. (2018). Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C,S co-doped TiO2 nanoparticles. Journal of Water and Environmental Nanotechnology, 3(2), 116–127. https://doi.org/10.22090/jwent.2018.02.003
Hou, Y., Pu, S., Shi, Q., Mandal, S., Ma, H., Xue, S., Cai, G., & Bai, Y. (2019). Ultrasonic impregnation assisted in-situ photoreduction deposition synthesis of Ag/TiO2/rGO ternary composites with synergistic enhanced photocatalytic activity. Journal of the Taiwan Institute of Chemical Engineers, 104, 139–150. https://doi.org/10.1016/j.jtice.2019.08.023
Joshi, A. S., Elamurugu, E., & Leela, S. (2024). Impact of Graphene oxide ( GO ) and reduced Graphene Oxide ( rGO ) on the TiO 2 thin film composite ( TiO 2 : GO / rGO ) photoanodes. 9(June).
Kaus, N. H. M., Rithwan, A. F., Adnan, R., Ibrahim, M. L., Thongmee, S., & Yusoff, S. F. M. (2021). Effective strategies, mechanisms, and photocatalytic efficiency of semiconductor nanomaterials incorporating rgo for environmental contaminant degradation. Catalysts, 11(3), 1–27. https://doi.org/10.3390/catal11030302
Kiwaan, H. A., Atwee, T. M., Azab, E. A., & El-Bindary, A. A. (2020). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. Journal of Molecular Structure, 1200, 127115. https://doi.org/10.1016/j.molstruc.2019.127115
Kumari, H., Sonia, Suman, Ranga, R., Chahal, S., Devi, S., Sharma, S., Kumar, S., Kumar, P., Kumar, S., Kumar, A., & Parmar, R. (2023). A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. In Water, Air, and Soil Pollution (Vol. 234, Issue 6). Springer International Publishing. https://doi.org/10.1007/s11270-023-06359-9
Kusiak-Nejman, E., Wanag, A., Kapica- Kozar, J., Kowalczyk, Ł., Zgrzebnicki, M., Tryba, B., Przepiórski, J., & Morawski, A. W. (2020). Methylene blue decomposition on TiO2/reduced graphene oxide hybrid photocatalysts obtained by a two-step hydrothermal and calcination synthesis. Catalysis Today, 357(January 2019), 630–637. https://doi.org/10.1016/j.cattod.2019.04.078
Li, J., Huang, L., Jiang, X., Zhang, L., & Sun, X. (2021). Preparation and characterization of ternary Cu/Cu2O/C composite: An extraordinary adsorbent for removing anionic organic dyes from water. Chemical Engineering Journal, 404(August 2020), 127091. https://doi.org/10.1016/j.cej.2020.127091
Liu, J., Wang, P., Qu, W., Li, H., Shi, L., & Zhang, D. (2019). Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene. Applied Catalysis B: Environmental, 257(June), 117880. https://doi.org/10.1016/j.apcatb.2019.117880
Luna-Sanguino, G., Tolosana-Moranchel, A., Duran-Valle, C., Faraldos, M., & Bahamonde, A. (2019). Optimizing P25-rGO composites for pesticides degradation: Elucidation of photo-mechanism. Catalysis Today, 328(July 2018), 172–177. https://doi.org/10.1016/j.cattod.2019.01.025
Martina Kocijan 1,*, Lidija ´Curkovi´c 1,*, D. L. 1, , Katarina Mužina 2, Ivana Baˇci´c 3, T. R. 4, 4, M. P., & , Igor Bdikin 5 , Gonzalo Otero-Irurueta 5, M. J. H. 5 and G. G. 5. (2021). applied sciences Graphene-Based TiO 2 Nanocomposite for Photocatalytic Degradation of Dyes in Aqueous Solution under Solar-Like Radiation. 1–15.
Nasr, M., Balme, S., Eid, C., Habchi, R., Miele, P., & Bechelany, M. (2017). Enhanced visible-light photocatalytic performance of electrospun rGO/TiO2 composite nanofibers. Journal of Physical Chemistry C, 121(1), 261–269. https://doi.org/10.1021/acs.jpcc.6b08840
Nikmah. (2019). Pengaruh Variasi Temperatur Kalsinasi Komposit Rgo/Zno/Tio2 Terhadap Sifat Fotokatalitik Untuk Degradasi RhodaminE-B.
Noormohammadi, E., & Sanjabi, S. (2020). Photocatalytic Activity and Wettability of RGO/TiO2 Nanocomposites Prepared by Electrophoretic Co-Deposition. Surface Review and Letters, 27(3), 9–11. https://doi.org/10.1142/S0218625X19501117
Oh, W. Da, & Lim, T. T. (2019). Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal: An overview. Chemical Engineering Journal, 358(July 2018), 110–133. https://doi.org/10.1016/j.cej.2018.09.203
Peiris, D. S. U., Ekanayake, P., & Petra, M. I. (2018). Stacked rGO–TiO2 photoanode via electrophoretic deposition for highly efficient dye-sensitized solar cells. Organic Electronics, 59(May), 399–405. https://doi.org/10.1016/j.orgel.2018.05.059
Prabhakarrao, N., Chandra, M. R., & Rao, T. S. (2017). Synthesis of Zr doped TiO2/reduced Graphene Oxide (rGO) nanocomposite material for efficient photocatalytic degradation of Eosin Blue dye under visible light irradiation. Journal of Alloys and Compounds, 694, 596–606. https://doi.org/10.1016/j.jallcom.2016.09.329
Prima, E. C., Utami, M. P., Setiawan, A., & Suhendi, E. (2022). Review Penggunaan Reduced Graphene Oxide/TiO2 sebagai Fotoelektrode pada Dye-Sensitized Solar Cell. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 6(1), 1–9. https://doi.org/10.30599/jipfri.v6i1.1146
Purwaningsih, H., Suari, N. M. I. P., Widiyastuti, W., & Setyawan, H. (2022). Preparation of rGO/MnO2 Composites through Simultaneous Graphene Oxide Reduction by Electrophoretic Deposition. ACS Omega, 7(8), 6760–6767. https://doi.org/10.1021/acsomega.1c06297
Quang, T., Viet, Q., Hoang, V., Thi, N., & Giang, H. (2021). Colloids and Surfaces A : Physicochemical and Engineering Aspects Statistical screening and optimization of photocatalytic degradation of methylene blue by ZnO – TiO 2 / rGO nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629(August), 127464. https://doi.org/10.1016/j.colsurfa.2021.127464
Rahmat, S. T., Tan, W. K., Kawamura, G., Matsuda, A., & Lockman, Z. (2019). Facile fabrication of rGO/Rutile TiO2 nanowires as photocatalyst for Cr(VI) Reduction. Materials Today: Proceedings, 17, 1143–1151. https://doi.org/10.1016/j.matpr.2019.06.543
Rahmawati, A., & Kusumawati, D. H. (2020). Review : Komposit Tio2/Rgo Sebagai Fotokatalis Untuk Mendegradasi Zat Warna. Inovasi Fisika Indonesia, 9(2), 78–84. https://doi.org/10.26740/ifi.v9n2.p78-84
Ruid, M., Miguel, A. Á., Cruz-quesada, G., Rivera-utrilla, J., & Manuel, S. (2020). Ethylparaben Degradation. Journal of Catalysts.
Samsudin, M. F. R., Mahmood, A., & Sufian, S. (2018). Enhanced photocatalytic degradation of wastewater over RGO-TiO2/BiVO4 photocatalyst under solar light irradiation. Journal of Molecular Liquids, 268, 26–36. https://doi.org/10.1016/j.molliq.2018.05.012
Scarpelli, F., Mastropietro, T. F., Poerio, T., & Godbert, N. (2018). Mesoporous TiO2 Thin Films: State of the Art. Titanium Dioxide - Material for a Sustainable Environment, June. https://doi.org/10.5772/intechopen.74244
Teh, C. Y., Wu, T. Y., & Juan, J. C. (2017). An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chemical Engineering Journal, 317, 586–612. https://doi.org/10.1016/j.cej.2017.01.001
Tolosana-Moranchel, Á., Manassero, A., Satuf, M. L., Alfano, O. M., Casas, J. A., & Bahamonde, A. (2019). TiO2-rGO photocatalytic degradation of an emerging pollutant: Kinetic modelling and determination of intrinsic kinetic parameters. Journal of Environmental Chemical Engineering, 7(5), 103406. https://doi.org/10.1016/j.jece.2019.103406
Tsai, T. Y., Zheng, J. R., Yuan, C. S., Chen, T. Y., & Shen, H. (2024). Enhancing the photothermal catalytic efficiencies of Hg0 and NO with Bi2O3/TiO2 modified by reduced graphene oxide (rGO). Journal of Environmental Chemical Engineering, 12(2). https://doi.org/10.1016/j.jece.2024.112124
UN. (2017). United Nations World Water Development Report. In The Sage Learning of Liu Zhi (Vol. 1).
Wafi, M. A. E., Ahmed, M. A., Abdel-Samad, H. S., & Medien, H. A. A. (2022). Exceptional removal of methylene blue and p-aminophenol dye over novel TiO2/RGO nanocomposites by tandem adsorption-photocatalytic processes. Materials Science for Energy Technologies, 5, 217–231. https://doi.org/10.1016/j.mset.2022.02.003
Wang, B., Wei, K., Mo, X., Hu, J., He, G., Wang, Y., Li, W., & He, Q. (2019). Improvement in Recycling Times and Photodegradation Efficiency of Core-Shell Structured Fe3O4@C-TiO2 Composites by pH Adjustment. ES Materials and Manufacturing, 4, 51–57. https://doi.org/10.30919/esmm5f215
Zhang, S., Xu, J., Hu, J., Cui, C., & Liu, H. (2017). Interfacial Growth of TiO2-rGO Composite by Pickering Emulsion for Photocatalytic Degradation. Langmuir, 33(20), 5015–5024. https://doi.org/10.1021/acs.langmuir.7b00719